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Abstract. Recent deep neural networks have achieved great success in
medical image segmentation. However, massive labeled training data
should be provided during network training, which is time consuming
with intensive labor work and even requires expertise knowledge. To
address such challenge, inspired by typical GANs, we propose a novel
end-to-end semi-supervised adversarial learning framework for medical
image segmentation, called “Importance guided Semi-supervised Deep
Networks” (ISDNet). While most existing works based on GANs use a
classifier discriminator to achieve adversarial learning, we combine a fully
convolutional discriminator and a classifier discriminator to fulfill bet-
ter adversarial learning and self-taught learning. Specifically, we propose
an importance weight network combined with our FCN-based confidence
network, which can assist segmentation network to learn better local and
global information. Extensive experiments are conducted on the LASC
2013 and the LiTS 2017 datasets to demonstrate the effectiveness of our
approach.
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1 Introduction

Medical image segmentation is a fundamental yet challenging problem in medical
image analysis, which aims to segment organs or pathological area (e.g. left
atrium or liver lesion) in medical images. Recently, a typical Fully Convolutional
Network (FCN) [20] based methods of encoder-decoder structure have achieved
considerable success in semantic image segmentation, such as U-Net [21] and
deeplabv3+ [5]. Although CNN-based approaches have made great progress, they
often require massive labeled training data. Medical image tasks are usually more
difficult than natural image tasks because of little training data and high cost
manual annotations, etc. In addition, most medical datasets are still constrained
in limited size and application scenarios. Hence, it is a complex and expensive
procedure to obtain large-scale medical labeled data.
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In order to ease the effort of acquiring high-quality data, unsupervised learn-
ing is an alternative way to utilize massive unlabeled data. However, due to
lacking the concept of classes, unsupervised learning methods have not attained
convincing performance in segmentation. So semi/weakly-supervised methods
have drawn much attention from many researchers in the community. These
methods generally demand additional annotations or data, such as the image-
level class label [18], box level [16,17], point level [19], or scribble level [1].

Recently, Generative Adversarial Networks (GANs) [22] have achieved a wide
range of success due to their ability to generate high-quality realistic images
[2,6,11,12]. It attracts extensive attention with successful applications in super-
resolution [14], domain adaptation [8,15], zero-shot learning [13], etc. A classic
GAN consists of two sub-networks (i.e., generator and discriminator) that play
a min-max game in the training procedure where generator produces a sample
of the target data distribution, while discriminator aims to differentiate between
real and fake data repeatedly. The generator is then optimized to generate more
realistic samples that are more close to target data distribution. Recently, sev-
eral works have applied the GANs framework in semantic segmentation. Luc
et al. [23] propose to apply a classifier discriminator to assist the training pro-
cess for semantic segmentation in a fully-supervised way. But this method has
not achieved distinguished results over the baseline scheme and fails to tackle
unlabeled data for semi-supervised setting. Frid-Adar et al. [9] employ GANs to
generate synthetic medical images to train segmentation network. Nie et al. [7]
use sample attention mechanism to improve the network training. However, those
jobs utilize the classification networks as their discriminators in fully-supervised
ways, so those discriminators only can capture the global information of gener-
ated masks and ground truth masks without considering the local details, which
is more important for the task of semantic segmentation.

In this paper, we propose a semi-supervised semantic segmentation algorithm
(called ISDNet) based on GANs in order to alleviate the demand for large-
scale medical labeled data. Inspired by [10] and [8], our network consists of
three sub-networks: (1) segmentation network, (2) confidence network and (3)
importance weight network. In this work, two semi-supervised loss are conducted
to leverage the unlabeled data. First, Our FCN-based confidence network can
generate confidence maps, which can guide our segmentation network in a self
training strategy. The confidence maps provide us the trustworthy regions in
the segmented label map, which can be selected to generate proxy label for
unlabeled data. Second, we apply the adversarial loss on unlabeled data in the
supervised setting, which encourages the model to predict segmentation outputs
of unlabeled data close to the ground truth distributions. Then, our importance
weight network can identify the importance score of unlabeled samples, which
represents the probability of the sample come from the labeled data distribution.
Finally, we integrate the importance score into semi-supervised loss and obtain
our two weighted semi-supervised loss.

In sum, our main contributions include: (i) we develop an adversarial frame-
work, which improves semantic segmentation performance without adding any
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Fig. 1. Illustration of the architecture of our proposed ISDNet, which consists of a
segmentation network, a confidence network and an importance weight network.

computational cost during inference; (ii) we propose a semi-supervised frame-
work to improve the segmentation accuracy with unlabeled data; (iii) we combine
a fully convolutional discriminator and a classifier discriminator to facilitate the
semi-supervised learning, which can better use unlabeled data. To demonstrate
the effectiveness of our proposed approach, ablation studies are conducted on the
LASC 2013 dataset. Overall, our proposed approach brings 1.8% improvement
on the LASC 2013 dataset and 11.4% improvement on the LiTS 2017 dataset.

2 Our Approach

The proposed ISDNet consists of three subnetworks, i.e., (1) segmentation net-
work (denoted as S), (2) confidence network (denoted as D) and (3) importance
weight network (denoted as D0). The architecture of our proposed framework is
presented in Fig. 1.

In order to facilitate elaboration, we first give the definitions of terminolo-
gies used throughout the paper. Given an input medical image Xn of dimension
H × W × 1 and its one-hot encoded ground truth label Yn, we denote the seg-
mentation network as S(·), the features as Z(Xn) extracted from the encoder of
our segmentation network and the predicted probability map as Ŷn = S(Xn) of
size H × W × C, where C is the category number. We denote our fully convolu-
tional discriminator as D(·) which takes class probability maps as the input (the
output from segmentation network S(Xn) or ground truth label maps Yn) and
then outputs a confidence map of size H × W × 1. Confidence map generated by
D scores each pixel p, which represents whether that pixel is sampled from the
ground truth label (p = 1) or the segmentation network (p = 0). The importance
weight network denoted as D0(·), takes Z(Xn) (the features of labeled sample or
unlabeled sample) as the input and outputs an importance weight. The impor-
tance weight represents whether that sample is sampled from the labeled data
(Xn = 1) or the unlabeled data (Xn = 0).
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2.1 Segmentation Network

In ISDNet as shown in Fig. 1, we employ a simplified 2D U-Net (SU-Net) as
our segmentation network, but any end-to-end segmentation network can be
applied, such as FCN and deeplabv3+, etc. In this paper, we halve the num-
ber of all convolutional layers in original U-Net [21], and use leaky ReLU and
group normalization [3] instead of ReLU and batch normalization to balance the
performance and memory cost.

Total Loss for Segmentation Network. We train the segmentation network
by minimizing a multi-task loss function

Lseg = LDice + λadvLwadv + λsemiLwsemi, (1)

where LDice, Lwadv and Lwsemi denote the multi-class dice loss, adversarial loss
and semi-supervised loss, respectively. In (1), λadv and λsemi are two weights for
minimizing the proposed multi-task loss function.

Multi-class Dice Loss. To overcome the class imbalance problem, we propose
to use a weighted multi-class dice loss as the segmentation loss

LDice = 1 − 2
C∑

c=1

wcŶ c
nY c

n

wc(Ŷ c
n + Y c

n )
, (2)

where Ŷ c
n denotes the predicted probability belonging to class c (i.e. background,

liver, or liver lesion), Y c
n denotes the ground truth probability, and wc denotes

a class dependent weighting factor. Empirically, we set the weights to be 0.2
for background, 1.2 for liver, and 2.2 for liver lesion. But for left atrium (LA)
segmentation, we use normal two-class dice loss.

2.2 Confidence Network

Different from using CNN-based discriminator, we propose to use a FCN-based
discriminator called confidence network to generate more detailed adversarial
information in local region. Hence, we combine adversarial learning in our work
to further optimize the segmentation network.

Adversarial Loss of the Confidence Network. To train the confidence net-
work, we minimize the binary cross-entropy loss LD using

LD = Lbce(D(Yn)h,w, 1) + Lbce(D(S(Xn))h,w, 0), (3)

where Xn and Yn represent the input data and its corresponding ground truth
label map (one-hot encoding scheme), respectively. In addition, D(S(Xn))(h,w) is
the confidence map of Xn at location (h,w), and D(Yn)(h,w) is defined similarly.

Adversarial Loss of the Segmentation Network. In the conventional
GANs, generators and discriminators play a min-max game. Hence, there is
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another loss from D working as adversarial Loss to further improve segmenta-
tion network. It enforces higher-order consistency between ground truth label
and predicted masks. We utilize the loss Ladv based on a fully convolutional
discriminator network

Ladv = Lbce(D(S(Xn))h,w, 1). (4)

With this loss, we further improve the ability of segmentation network to fool
the discriminator by maximizing the probability of the predicted results being
more close to the ground truth distribution.

2.3 Importance Weight Network

Training with Unlabeled Data. In this work, we concern more about how to
use unlabeled data to improve the performance of segmentation network. Since
there is no corresponding ground truth label for unlabeled data, LDice no longer
works. But the adversarial loss Ladv is still applicable as it only requires the
discriminator network.

In addition, since our confidence network could provide local confidence infor-
mation, we propose a self-taught learning framework with our trained discrimi-
nator D for unlabeled data. The main idea is that our confidence network can
generate a confidence map CM = D(S(Xn))h,w to indicate us which regions
of the predicted results are sufficiently close to the ground truth distribution.
Then we process the confidence map with a threshold Tsemi to obtain the con-
fident regions. In this way, we can exploit these confident regions to filter the
segmentation results of unlabeled data to improve the segmentation network.
The semi-supervised loss is defined as

Lsemi = 1 − 2
C∑

c=1

wc[CM > Tsemi]Ŷ c
n Ȳ c

n

wc[CM > Tsemi](Ŷ c
n + Ȳ c

n )
, (5)

where Ȳn is the one-hot encoding of arg max(Ŷn). [·] is the indicator function.

Sample Weights Learning. Furthermore, we employ another discriminator
named D0. It can output the probability that an unlabeled sample belongs to
labeled data distribution on the image level. Specifically, the importance weight
network is similar to the original GANs with min-max loss

Ladv = Lbce(D0(Z(Xl), 1) + Lbce(D0(Z(Xunl)), 0), (6)

where Z(·) is the feature extractor (also is the encoder of our SU-Net) for labeled
data Xl and unlabeled data Xunl respectively, and D0 is a binary classifier with
all the labeled data labeled as 1 and all the unlabeled data labeled as 0.

Assume that in the case of the optimal classifier D0, the output value of D0

is the probability that the sample comes from the labeled data distribution. If
D∗(z) ≈ 1, then the sample will highly likely originate from the labeled data dis-
tribution, since the features Z(Xl) are quite different from the features Z(Xunl)
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and can be ideally separated from labeled data distribution by D0. Then we
should reduce the contribution of these samples because feature extractor has
already been trained by some similar samples. On the other hand, if D∗(z) is
small, it means feature extractor has not been trained by those samples. A larger
importance weight should be applied to these samples to improve segmentation
network. Hence, the sample weights function should be inversely related to D∗(z)
and the importance weight function of the unlabeled samples is defined as

w(z) = 1 − D∗(z). (7)

As can be seen that if D∗(z) is small, w(z) is large. Hence, the weights for
unlabeled samples that are similar to the labeled data will be smaller than those
are not similar to the labeled data. Our aim is to obtain the relative importance
of unlabeled samples. The weight function can also be expressed as a function
of density ratio between labeled and unlabeled features. If we apply the weights
to D0, then the Jensen-Shannon divergence between two densities can not be
reduced from the theoretical results of the minimax game [8]. Hence, we utilize
the weights to D to solve this issue. In this way, D0 is only used for obtaining the
importance weights for unlabeled samples. Thus, we will not update the encoder
with the gradient of D0. So we can integrate the importance weight into our
semi-supervised loss.

Lwsemi = w(z)Lsemi. (8)

And adversarial loss for unlabeled data can be modified as

Lwadv = w(z)Ladv. (9)

But for labeled data, w(z) should be set to 1. By summing the above losses, the
total loss to train the segmentation network can be defined as (1).

(a) Annotation (b) Baseline (c) &Lwadv (d) Lwadv&Lwsemi

Fig. 2. Comparisons on the LiTS 2017 dataset using 1/2 labeled data. Green area and
red area represent liver and lesion, respectively. It can be seen that our confidence
network assists segmentation network discover parts of lesions while our baseline does
not. Furthermore, our semi-supervised algorithm refines the segmentation results.
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3 Experiments

Evaluation Datasets and Metrics. Experiments are conducted on two pub-
licly available datasets to report the state-of-the-art performance of ISDNet.
Ablation studies are conducted on LASC 2013 dataset [4]. We also conduct
experiments on LiTS 2017 dataset to verify the validity of our method. For
LASC 2013, we employ data augmentation and obtain 3 K 2D images with size
320×320 in total. Dice index for left atrium (LA) and running time are selected
to compare with other state-of-the-art method. For LiTS 2017, we use two met-
rics to evaluate the segmented liver lesions, including dice per case and global
dice.

Implementation Details. All experiments are built with Pytorch framework
on a single NVIDIA 1080ti GPU. We use the Adam optimizer for both our seg-
mentation network and two discriminators with the learning rate 10−4. For the
hyper-parameters in the proposed method, λadv is set as 0.001 when trained
with labeled and unlabeled data. We set λsemi as 1 and Tsemi as 0.1. For
semi-supervised training, we randomly divide all dataset into labeled and unla-
beled data. We initiate the semi-supervised learning after 5 epochs training with
labeled data. In each epoch, we train both the segmentation network and two dis-
criminator networks, only labeled data are used for training of the discriminator
D while D0 demands the part of unlabeled data.

Table 1. Results on the LASC test set. We utilize 1/2 images as labeled data, the rest
as unlabeled data for semi-supervised learning. Running time indicates mean inference
time on CPU.

Data amount

Methods 1/2 Full Running time (sec)

LTSI VRG [24] N/A 91.0 3100

UCL 1C [25] N/A 93.8 1200

UCL 4C [25] N/A 85.9 1200

OBS 2 [4] N/A 90.8 N/A

Hung et al. [10] 91.0 N/A 1.1

Luc et al. [23] 90.0 93.6 1.1

Liu et al. [26] N/A 94.0 23.7

AF-CNN-SP [27] N/A 95.1 450

U-Net [21] 87.4 90.8 1.4

Baseline (SU-Net) 89.5 93.2 1.1

Baseline+Lwadv 90.5 94.0 1.1

Baseline+Lwadv+Lwsemi 91.3 N/A 1.1
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3.1 LASC 2013

Results and Analysis. Table 1 shows the evaluation results on the LASC 2013
test dataset. We randomly sample 1/2 images as labeled data, the rest as unla-
beled data. We compare the proposed algorithm against LTSI-VRG [24], UCL-
1C [25], UCL-4C [25], U-Net [21], [26] and [27] to demonstrate that our baseline
model (SU-Net) performs comparably with the state-of-the-art schemes. LTSI-
VRG, UCL-1C, UCL-4C are the top three methods in Dice index, which are all
based on multi-atlas. OBS-2 [4] is the result from human observer. [26] combines
CNN and recurrent neural network (RNN) to achieve a Dice index of 0.94, but it
will greatly increase the inference time (22 times slower than our SU-Net). [27]
is based on a multi-view CNN with an adaptive fusion strategy and a new loss
function, which is 400 times slower than ours and use 20 times more data than us.
Table 1 shows that the adversarial loss brings consistent performance improve-
ment (from 0.8% to 1.0%) over different amounts of training data. Incorporating
the proposed semi-supervised learning scheme brings overall 1.8% improvement.
For [10] and [23], we use our SU-Net to replace its original segmentation net-
work for equal comparisons. Specially, our importance weight network brings
0.3% improvement compared to [10]. It means our network makes better use
of unlabeled data to improve network performance. Apart from this, our confi-
dence network brings improvement (from 0.4% to 0.5%) compared to a typical
classifier discriminator [23].

Table 2. Hyper parameter analysis.

Data amount λadv λsemi Tsemi Dice

1/2 0.0001 0 N/A 89.3

1/2 0.001 0 N/A 90.5

1/2 0.005 0 N/A 88.7

1/2 0.001 5 0.1 89.2

1/2 0.001 1 0.1 91.3

1/2 0.001 0.5 0.1 90.6

1/2 0.001 1 0 90.1

1/2 0.001 1 0.1 91.3

1/2 0.001 1 0.5 90.9

1/2 0.001 1 1 90.3

Hyper-parameter Analysis. The proposed algorithm is governed by three
hyper parameters: λadv and λsemi for balancing the multi-task learning in
(1), and Tsemi used to control the sensitivity in the semi-supervised learning
described in (5). Table 2 shows sensitivity analysis of hyper parameters on the
LASC 2013 dataset under semi-supervised setting. Different from [10], we find
that smaller λadv must be used for medical image tasks, this is because the con-
tent of natural images is richer and requires larger loss to guide network learning.
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Then, we conduct the experiments with different values of Tsemi. With higher
Tsemi, our algorithm will select regions, which are more close to the ground truth
distribution. When Tsemi = 0, all the pixel predictions in unlabeled images will
be applied for semi-supervised training, which leads to performance degradation.
Overall, the proposed model achieves the best results when Tsemi = 0.1.

Ablation Study. We present ablation study of our proposed system in Table 3
on LASC test dataset. Our confidence network gains 0.5% and 0.4% improvement
compared to a classifier discriminator with half and full data, respectively. Then,
we apply the semi-supervised learning method without the adversarial loss. The
results show that the adversarial procedure on the labeled data is necessary to
our semi-supervised scheme. If the segmentation network does not participate in
adversarial training, the confidence maps generated by the discriminator would
be pointless. As shown in Table 3, our semi-supervised methods in ISDNet help
to improve segmentation performance.

Table 3. Ablation study of the proposed method on the LASC dataset.
√

denotes the
setting of corresponding column is employed. CN denotes confidence map.

Data amount

Lwadv Lwsemi Ladv&Lsemi CN 1/2 Full

89.5 93.2√ √
90.5 94.0√
90.0 93.6√ √
89.1 N/A√ √ √
91.3 N/A√ √
91.0 N/A

3.2 LiTS 2017

Results and Visualization. Furthermore, we extend the experiment on LiTS
2017 dataset. Figure 2 shows visual comparisons of the segmentation results on
the LiTS 2017 validation dataset generated by our proposed method. It can be
seen that no lesion is found in our baseline (Fig. 2(b)), but with the assistance
of adversarial loss, segmentation network can detect parts of lesions (Fig. 2(c)).
Further more, with our semi-supervised adversarial learning algorithm, segmen-
tation network could segment a majority of lesions (Fig. 2(d)). Table 4 shows the
liver lesion evaluation results on the LiTS 2017 test dataset with random sam-
pled 1/2 images as labeled data. It can be seen that our methods have made the
best dice per case of 50.6% with 10.5% gain and the best global dice of 72.5%
with 11.4% gain.
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Table 4. Results on the LiTS test set. DPC indicates dice per case. GD denotes global
dice.

Methods Data Amount DPC GD

Our baseline Full 54.0 76.6

Baseline+Lwadv Full 56.8 76.9

Our baseline 1/2 40.1 61.1

Baseline+Lwadv 1/2 45.9 64.0

Baseline+Lwadv+Lwsemi 1/2 50.6 72.5

4 Conclusion

In this work, we have presented a novel importance guided semi-supervised
adversarial learning scheme (ISDNet) for medical image segmentation. Specif-
ically, we train two discriminators to enhance the segmentation network with
both labeled and unlabeled data to effectively address the insufficient labeled
data problem. We combine FCN-based discriminator with CNN-based discrimi-
nator for our semi-supervised learning strategy. It can be seen that by integrat-
ing these components into our framework, the ISDNet has achieved significant
improvement in terms of both accuracy and robustness.
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of China (61673269, 61273285).
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